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1

Dynamics of polynomial maps

A simple mechanism can make a chaos. The case of iteration of polynomial
maps is no exception. Indeed an extremely simple map,z → z2 + c, can
create deep confusion. Understanding of, or, more modestly, an attempt to
understand, such phenomena is the theme of this book.

More precisely, consider a monic polynomial

P(z) = zk + a1zk−1+ · · · + ak−1z+ ak

of degreek. ThenP can be considered as a self-map ofC, and the issue is to
discuss what happens when we applyP to a given pointz iteratively. Set

z0 = z, z1 = P(z), . . . , zn = P(zn−1), . . . ,

and consider the behavior of the sequence{zn}∞n=1 or the orbit ofz. Here, one
might take some stable dependence on the initial valuez for granted. But this
is not true in general, and the set of unstable initial values is, almost always,
incredibly complicated, and nowadays is called a fractal. Moreover, for almost
every such initial value, the behavior is chaotic enough.

First, in §1.1, we give several typical examples of fractal sets caused by
polynomial maps, and explain basic properties of them. Then §1.2 summarizes
local theory near a fixed point of a general holomorphic map.

Turning to quadratic polynomial maps as above, we introduce the Mandel-
brot set, which in itself is a fractal and represents the very interesting family of
quadratic polynomial maps, in §1.3.

As the fundamental tools to measure how complicated the set considered is,
we introduce in §1.4 the Hausdorff measures and the logarithmic capacity, and
give some basic facts about them.

Finally, in §1.5, we define a polynomial-like map, which is one of the
fundamental concepts in the modern theory of complex dynamics, and explain
some basic results.
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2 Dynamics of polynomial maps

In this chapter, we explain not only basic facts on the dynamics of polyno-
mials, but also several central issues about complex dynamics. In particular,
we include many important results without proofs. As general references for
those results, we cite books by Beardon (1991), Carleson and Gamelin (1993),
Milnor (1990), and Steinmetz (1993).

1.1 The set of escaping points for a polynomial

1.1.1 Typical examples of polynomials

Fix a monic polynomial

P(z) = zk + a1zk−1+ · · · + ak−1z+ ak

of degreek ≥ 2, and consider the sequence of{Pn}∞n=0, where and in what
follows, we set

P0(z) = z, P1(z) = P(z), . . . , Pn(z) = P(Pn−1(z)).

Then for everyz with sufficiently large|z|, we have

|z| < |P(z)| < |P2(z)| < · · · .
In fact, choose anR> 2 so large that|P(z)| > |z|k/2 for everyz with |z| > R.
Then inductively, we see that

R< |z| < |z|k/2< |P(z)| < · · · < |Pn−1(z)| < |Pn−1(z)|k/2< |Pn(z)|.
Thus for every suchz, Pn(z) tends to∞ in the Riemann spherêC = C∪{∞}.

Definition We set

I P =
{

z ∈ C
∣∣∣ lim

n→∞ Pn(z) = ∞
}
,

and call it theset of escaping pointsfor P. Also we set

K P = C− I P

and call it thefilled Julia setof P. The boundaryJP = ∂K P of K P is called
theJulia setof P.

Remark Sincek ≥ 2, any polynomial

P(z) = a0zk + a1zk−1+ · · · + ak−1z+ ak (a0 6= 0)

is affine conjugate to a monic polynomial of degreek. More precisely, set
A(z) = ωz, whereω is a(k− 1)th root ofa0, and we see thatA ◦ P ◦ A−1(z)
is a monic polynomial of degreek.
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The following example is clear.

Example 1.1.1 Let P(z) = z2. Then we have

I P = {|z| > 1}, K P = {|z| ≤ 1}, JP = {|z| = 1}.

Example 1.1.2 Let P(z) = z2− 2. Then we have

I P = C− [−2,2], K P = JP = [−2,2],

where[−2,2] denotes the interval{x ∈ R | −2≤ x ≤ 2}.

Verification SetB(z) = z+ 1/z, and we can take the single valued branch of
B−1 fromC− [−2,2] onto{|z| > 1}. A simple calculation shows thatP(z) =
B ◦ P0 ◦ B−1(z) with P0(z) = z2. Hence by Example 1.1.1, we see thatI P

containsC− [−2,2]. On the other hand, it is clear thatP([−2,2]) = [−2,2],
and hence the assertions follow.

Recall thatP restricted to [−2,2] is a typical unimodal map which repre-
sents an action that expands the interval to twice its length and then folds it
into two.

In general,JP has a very complicated shape. Actually, the above examples
are exceptions. We show the variety of the Julia sets by examples.

Remark The reasons why the Julia sets in the examples below have such
shape are not easy, and need several results discussed later. But for the sake of
convenience, we include brief explanations.

We start by clarifying what we consider as fractal sets. There are several
ways to define fractal sets. Self-similarity relates closely to fractal sets. But
there exist so many complicated sets, for which self-similarity is not so clear or
seems to be absent. From a quantitative viewpoint, we may call every simple
curve with Hausdorff dimension, defined in §1.4, greater than 1 a fractal curve.
But we take a looser definition (also see §4.1).

Definition Let E be a closed subset ofC without interior. We say thatE is a
fractal setif E cannot be represented as a countable union of rectifiable curves.

We say that a domainD in Ĉ is a fractal domainif the boundary∂D is a
fractal set.

As to fractal sets in the multi-dimensional complex number space, we will
discuss these in Chapters 6–9.
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Even in the case that the Julia setJP is a simple closed curve,JP is terribly
complicated except for trivial cases.

To give such examples, we perturbP(z) = z2 in Example 1.1.1. That is,
considerPc(z) = z2 + c with sufficiently smallc. Then simple computations
show that there is a fixed pointzc, a solution ofP(z) = z, nearz = 0 and
hence the value of the derivative atzc is also near to 0. Moreover, we will
show that the structure ofJPc is circle-like.

Example 1.1.3When|c| is sufficiently small, the Julia setJPc of Pc(z) = z2+c
is a simple closed curve, but has a very complicated shape, called a fractal
circle. See Figure 1.1(a), the Julia set ofz2 + c, c = 0.59· · · + i 0.43· · ·, and
Figure 1.1(b), that ofz2+ c, c = 0.33· · · + i 0.07· · ·.

Verification By the corollary to Theorem 1.5.1, each Julia set is a quasicircle.
In particular, it is a simple closed curve. Theorem 1.4.7 implies that it is a
fractal set.

Fig. 1.1. Jordan curves as Julia sets

Definition We say that a compact setK in Ĉ is locally connectedif, for
everyz0 ∈ K and every neighborhoodU of z0, U ∩ K contains a connected
neighborhood ofz0 in K .

A connected and locally connected compact set is arcwise connected. For
some conditions on local connectedness, see §4.4.
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Example 1.1.4 Set

E =
{

x + iy

∣∣∣∣0< x < 1, y = sin
1

x

}
,

and the closure ofE is not locally connected.

Definition We call a compact setK adendriteif K is a connected and locally
connected compact set without interior whose complementC−K is connected.

Example 1.1.5A typical example of a dendrite is the (filled) Julia set ofz2+ i .
As other examples, we cite in Figure 1.2 the (filled) Julia sets of

(a) z2+ c, c ∈ R, c3+ 2c2+ 2c+ 2= 0,
(b) z3+ c, c = √ω − 1, ω2+ ω + 1= 0.

Verification These Julia sets are connected by Theorem 1.1.4, for the orbit
of the unique critical value 0 is preperiodic and hence bounded. They have
no interior points, which can be shown as in the proof of Theorem 4.2.18.
Further, since they are subhyperbolic, defined in §4.4, the Julia sets are locally
connected.

When the Julia set is a dendrite, it coincides with the filled Julia set. There is
another typical case that these are coincident with each other. It is the case that
the Julia set of a polynomial is a Cantor set. We will define and discuss Cantor
sets in §1.4. Here we temporarily call a setE a Cantor set ifE has no isolated
points, and every connected component ofE consists of a single point. Then
it is easy to see that such anE has uncountably many connected components.

By definition, if a closed set without interior has uncountably many con-
nected components, then it is a fractal set. We give in Figure 1.3 the Julia sets
of

(a) z2+ c, c = 0.38· · · + i 0.22· · ·,
(b) z2+ c, c = −0.82· · · + i 0.33· · ·.

These Julia sets are Cantor sets by Theorem 1.1.6, for thec are outside of
the Mandelbrot set defined in §1.3.

In the case of polynomialsP of degree greater than 2, the filled Julia set may
have interior points even if it has uncountably many connected components.
We give the following example.

Example 1.1.6 The Julia set ofP(z) = z3 + az with a = 0.038+ i 1.95
consists of uncountably many components and countably many components
have interior points. See Figure 1.4.



6 Dynamics of polynomial maps

(b)

Fig. 1.2. Dendrites as Julia sets

Verification Since Theorem 2.3.6 shows that Julia sets are perfect sets, a dis-
connected Julia set consists of uncountably many components. To see the filled
Julia set ofP has countably many connected components which have interior
points, we need only pursue the orbit of the finite critical points±√−a/3, as
is seen from the fact proved in Chapter 2. We remark that the shape of each
component depends on the polynomial induced by a suitable renormalization,
which is defined in §1.5.
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Fig. 1.3. Cantor sets as Julia sets

1.1.2 Basic properties of the filled Julia set

We have seen that the Julia set may have incredibly varied shapes even re-
stricted to simple polynomial maps. One purpose of this book is to discuss
such variety of shapes and characters of the Julia sets, though we stress expla-
nation of the unified nature which a fairly large class of complex dynamics are
equipped with.

We start with the following elementary fact.

Theorem 1.1.1 Let P(z) be a polynomial of degree not less than2. Then the
filled Julia setK P is a non-empty compact set.

Moreover,I P is a domain, that is a connected open set.

Remark WhenP(z) = z+ c (c 6= 0), it is clear thatK P is empty. The case
of a general linear map is left to the reader.
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Fig. 1.4. Disconnected Julia set with non-empty interior

Proof of theoremSince the degree ofP is not less than 2,P always has a fixed
point, which belongs toK P by definition. HenceK P is non-empty.

Next, as noted before, settingV = {
z ∈ C ∣∣ |z| > R

}
for a sufficiently

large R, we haveP(V) ⊂ V and V ⊂ I P. On the other hand, for every
z0 ∈ I P, the orbit elementsPn(z0) tend to∞, and hence there is anN such
that PN(z0) ∈ V . Thus we conclude that

I P =
∞⋃

n=1

(Pn)−1(V), (1.1)

which in particular implies thatI P is an open set and thatK P is a bounded
closed set.

Finally, if there exists a connected component of(Pn)−1(V) disjoint from
V , then it should be bounded, for(Pn)−1(V) containsV . This contradicts
the maximal principle, and hence we conclude that(Pn)−1(V) is a domain
containingV . Thus the above equation shows the assertion.

The equation (1.1) also implies the following.

Theorem 1.1.2 (Complete invariance)Let P(z) be a polynomial of degree
not less than2. Then the setsI P, K P and JP are completely invariant under
the action byP, i.e., lettingE be one of these sets, we have

P(E) = P−1(E) = E.
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Proof By (1.1), we see thatP−1(I P) = I P. Since P((Pn)−1(V)) =
(Pn−1)−1(V), we also have thatP(I P) = I P. ThusI P is completely invariant,
and so is the complementK P. SinceP is a continuous open map,JP is also
completely invariant.

Theorem 1.1.2 implies that every point ofK P has a bounded orbit. Hence
we can characterizeK P as the set of points with bounded orbits.

Definition A closed setE in Ĉ is calledperfectif E has no isolated points.

A domainD in Ĉ is simply connectedif the complement̂C−D is connected.

Theorem 1.1.3 Let P(z) be a polynomial of degree not less than2. Then the
filled Julia setK P is a perfect set.

Moreover, every connected component of the interior ofK P is simply con-
nected.

Proof Suppose that there is an isolated pointz0 of K P. Then we can draw a
simple closed curveC in I P such that the intersection of the interiorW of C
in C andK P consists only of the pointz0.

Now take such aV as in the proof of Theorem 1.1.1. Then by (1.1), we can
find N such thatPN(C) ⊂ V . SincePN(z0) is not contained inV , PN(W)

should containC − V . Then complete invariance ofK P means thatK P =
{z0}. In particular, P−1(z0) = {z0}, and henceP(z) should have the form
a(z− z0)

k + z0. But thenz0 should belong to the interior ofK P, which is a
contradiction.

Next, if there were a connected component of the interior ofK P which were
not simply connected, thenI P ∪ JP = I P would not be connected, which
contradicts Theorem 1.1.1.

Remark For everyz ∈ I P, the closure of
⋃∞

n=1(P
n)−1(z) containsJP, and

for everyz ∈ JP, we have

∞⋃
n=1

(Pn)−1(z) = JP.

These facts follows from the non-normality of{Pn} on the Julia set (see The-
orem 2.3.4), and give one of the standard ways to draw the Julia set.

Definition The solutions ofP′(z) = 0 are calledcritical pointsof P(z). We
denote byCP the set of all critical points ofP(z), and call it thecritical setof
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P(z):

CP = {z ∈ C | P′(z) = 0}.
Now whetherI P ∪ {∞} is simply connected or not depends on the location

of the critical set.

Theorem 1.1.4 Let P(z) be a polynomial of degree not less than2. Then the
filled Julia setK P is connected if and only ifI P ∩ CP = ∅.

Proof As in the proof of Theorem 1.1.1, fixR so thatV = {|z| > R} is
contained inI P.

First, suppose thatI P ∩ CP is the empty set. ThenPn gives a smooth
kn-sheeted covering ofVn = (Pn)−1(V) onto V , wherek is the degree ofP.
SinceV ∪ {∞} is simply connected, so is everyVn ∪ {∞}. Hence the union
I P ∪ {∞} of increasing domainsVn ∪ {∞} is simply connected.

Next suppose thatI P ∩ CP is not empty, and letN be the minimum ofn
such thatVn ∩ CP 6= ∅. Then applying Lemma 1.1.5 below to the proper
holomorphic mapP : (VN −VN−1)→ (VN−1−VN−2), we see thatVN is not
simply connected. HenceK P is not connected.

Lemma 1.1.5 (Riemann–Hurwitz formula for domains)Let D1 and D2 be
domains inĈ whose boundaries consist of a finite number of simple closed
curves. Letf (z) be a proper holomorphic map ofD1 onto D2. Then:

(i) Everyz ∈ D2 has the same numberk of preimages including multiplicity.
(ii) Denote byN the number of critical points off in D1 including multiplic-

ity. Then

(2− d1) = k(2− d2)− N,

wheredj is the number the boundary components ofD j .

In particular, when both theD j are simply connected,f has at mostk − 1
critical points.

The numberk in the lemma is called the degree off .

Proof The first assertion follows sincef is a proper open map. The second
assertion follows by applying Euler’s formula to suitable triangulations ofD j .

A typical example of disconnectedK P is those such as in Figure 1.3. We
say that a compact setE is totally disconnectedif every connected component
of E consists of a single point.
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Theorem 1.1.6 Let P(z) be a polynomial of degree not less than2. If the
set I P of escaping points containsCP, then K P is totally disconnected. In
particular, K P = JP.

Proof The assumption implies that the forward orbit

C+(P) =
∞⋃

n=1

Pn(CP)

of CP accumulates only to∞. Hence there is a simple closed curveC such
that the interiorW of C containsK P and the exteriorV = C − W contains
C+(P). As in the proof of Theorem 1.1.1, we see thatI P =

⋃∞
n=1(P

n)−1(V),
and hencePN(V ∪ CP) ⊂ V for a sufficiently largeN. This implies that
(PN)−1 haskN single valued holomorphic branches onW, which we denote
by {h j }kN

j=1. Then the elements ofU1 = {U j = h j (W)} are pairwise disjoint,

and eachU j containskN imagesU2 = {U jk = h j (Uk)}kN

k=1 of them. Induc-
tively, we can define the setU` of domains for every positive integer`, and
K P =

⋂∞
`=1U`.

Thus it suffices to show that, for any sequence of domainsU (`) ∈ U`
such thatU (`) ⊂ U (` − 1), the intersectionE = ⋂∞

`=1 U (`) consists of a
single point. For this purpose, letRj = {1 < |z| < mj } be the ring domain
conformally equivalent toW − U j for every j . We call the quantity logmj

themodulusof Rj . Setm = min j mj . Then since everyU (` − 1) − U (`) is
conformally equivalent to one of theRj , it contains a ring domain conformally
equivalent to{1< |z| < m}.

Here the crucial fact is the following subadditivity of the moduli of ring
domains. Suppose that a ring domainR contains disjoint ring domainsS1 and
S2 essentially, i.e., eachSj separateŝC − R. Let logm and logmj be the
moduli of R andSj . Then

logm≥ logm1+ logm2.

This is a direct consequence of the extremal length characterization of the
modulus.

ThusW − U (`) contains essentially a ring domain with modulus` logm.
HenceW−E contains essentially a ring domain with arbitrarily large modulus.
If E contains more than two points, this is impossible.

Remark In the case thatI P containsCP, the proof of Theorem 1.1.6 indicates
how to describe the dynamics onK P = JP symbolically.
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Take thespace of sequences ofk symbols

6k = {0,1, . . . , k− 1}Z+ = {(m0,m1, . . .) | mj ∈ {0,1, . . . , k− 1}},
whereZ+ is the set of non-negative integers. We equip6k with the product
topology. In other words, we take the topology so that the injection

(m0,m1, . . .)→
∞∑
j=0

2mj (2k− 1)− j−1

becomes a homeomorphism intoR.

Then lettingk be the degree ofP, we can identifyJP with 6k so that the
dynamics ofP on JP equals the canonicalshift operator

σ((m0,m1, . . .)) = (m1,m2, . . .)

on6k. Further see §3.2.1 and §7.4.

1.2 Local behavior near a fixed point

1.2.1 Schr̈oder equation forλ with |λ| < 1

The behavior of the dynamics of a polynomialP(z) can be fairly well under-
stood at least near a fixed point ofP(z). We gather in this subsection classical
and basic facts on local behavior of a general holomorphic function near a
fixed point. First,∞ is a fixed point ofP(z) considered as a holomorphic
endomorphism of̂C, and has a distinguished character.

Theorem 1.2.1 (B̈ottcher) Fix a monic polynomialP(z) of degreek ≥ 2.
Then for a sufficiently largeR, there exists a conformal mapφ(z) of V =
{|z| > R} intoC which has a form

φ(z) = bz+ b0+ b1

z
+ · · ·

and satisfies

φ(P(z)) = {φ(z)}k. (1.2)

Moreover, such aφ(z) is uniquely determined up to multiplication by a
(k− 1)th root of1.

We call such a functionφ(z) as in the above theorem aBöttcher functionfor
P at∞. Also see §7.3.
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Proof We may assume thatP(V) ⊂ V , and hence there exists a single valued
holomorphic branchψ(z) of

log
P(z)

zk

such that limz→∞ ψ(z) = 0. SinceP(z) = zk expψ(z), we see inductively
that

Pn(z) = zkn
exp{kn−1ψ(z)+ · · · + ψ(Pn−1(z))}.

Hence we can take

φn(z) = zexp

{
1

k
ψ(z)+ · · · + 1

kn
ψ(Pn−1(z))

}
as a branch of theknth root of Pn(z).

Now we may assume thatψ(z) is bounded onV . Then

∞∑
j=1

k− jψ(P j−1(z))

converges uniformly onV , and hence so does the sequence{φn(z)}. The limit
φ(z) of φn(z) is holomorphic onV and satisfies equation (1.2), forφn(P(z)) =
{φn+1(z)}k. Sinceφ(z) is injective near∞, we conclude with the first asser-
tion. The second assertion follows from (1.2).

In general, a B̈ottcher function cannot be continued analytically to the whole
of I P. Also see the remark below. But we have the following.

Proposition 1.2.2Letφ(z) be a B̈ottcher function for a monic polynomialP(z)
of degreek ≥ 2, and set

g(z) = log |φ(z)|.
Theng(z) can be extended to a harmonic function on the whole ofI P.

Moreover, setg(z) = 0 for everyz ∈ K P. Theng(z) is a continuous
subharmonic function onC.

The functiong(z) in the proposition is the Green function onI P ∪{∞} with
pole∞, which will be defined in §1.4.3.

Proof Since I P =
⋃∞

n=1(P
n)−1(V), we extendg(z) to the whole ofI P by

setting

g(z) = 1

kn
g(Pn(z))

if z ∈ (Pn)−1(V). Thisg(z) is well defined by (1.2) and clearly harmonic.
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Next, setA = maxz∈V−P(V) g(z), and take any neighborhoodW of K P.
Then

(PN)−1(V) ∩W = ∅
implies that

g(z) ≤ k−N A (z ∈ W).

Hence we have the second assertion.

Remark It is known as Sibony’s theorem that this continuous subharmonic
functiong(z) onC is actually Ḧolder continuous.

WhenCP is contained inK P, then any B̈ottcher functionφ(z) can be ex-
tended to a conformal map ofI P onto{|z| > 1}. In general, set

M = max{g(z0) | z0 ∈ CP};
then we can extendφ(z) to a conformal map of{z ∈ C | g(z) > M}.

Indeed, ifr > M , then{g(z) = r } is a simple closed curve, and hence we
can find a (multi-valued) conjugate harmonic functiong∗(z) of g(z) such that
G(z) = exp(g(z)+ig∗(z)) is single valued on{|z| > r }. Choosing the additive
constant ofg∗(z) so thatG(z) = φ(z) near∞, we conclude with the assertion.
In particular, ifCP ⊂ K P, Proposition 1.2.2 implies thatG(z) is a conformal
map of I P onto{|z| > 1}.

Now we turn to the case of a finite fixed point, which we assume to be 0 in
the rest of this section. We can generalize Böttcher’s theorem as follows.

Theorem 1.2.3 Let f (z) be a holomorphic function in a neighborhood of the
origin with the Taylor expansion

f (z) = c0zk + c1zk+1+ · · · (c0 6= 0).

Then there exist a neighborhoodU of the origin and a conformal mapφ :
U → C fixing the origin and satisfying

φ( f (z)) = {φ(z)}k.
Moreover, such aφ is uniquely determined up to multiplication by a(k−1)th

root of1.

Again, we call such aφ(z) aBöttcher functionfor f (at 0). The proof is the
same as that of Theorem 1.2.1 and hence omitted.

Remark We can derive Theorem 1.2.1 from Theorem 1.2.3 by taking the
conjugate byT(z) = 1/z.
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Note that Theorem 1.2.3 treats the case of a fixed point inCP for a monic
polynomial P. When a given fixed point does not belong toCP, or more
generally, when a holomorphic functionf (z) in a neighborhood of the origin
fixes the origin and satisfiesf ′(0) 6= 0, we have the Taylor expansion

f (z) = λz+ c2z2+ · · · (λ 6= 0).

We call thisλ themultiplier of f at the fixed point 0. The case thatλ = 0 has
been treated in Theorem 1.2.3.

Theorem 1.2.4 (Koenigs)Suppose that a functionf (z) holomorphic near the
origin has the Taylor expansion

f (z) = λz+ c2z2+ · · · (0< |λ| < 1).

Then there are a neighborhoodU of the origin and a conformal mapφ(z) of
U such thatφ(0) = 0 and that

φ ◦ f (z) = λφ(z) (z ∈ U ). (1.3)

Here,φ(z) is unique up to multiplicative constants.

Definition We call the equation (1.3) theSchr̈oder equationfor f . When the
Schr̈oder equation has a solution, then we say thatf is linearizableat 0.

Proof of theoremSet

φn(z) = λ−n f n(z)

for everyn and we have

φn ◦ f (z) = λ−n f n+1(z) = λφn+1(z).

Fix anη such thatη2 < |λ| < η < 1, and we can choose a positiveδ so small
that

| f (z)| < η|z| and | f (z)− λz| ≤ c|z|2

on {|z| < δ}, wherec = |c2|+1. Further, setρ = η2/|λ| (< 1), and we obtain
that

|φn+1(z)− φn(z)| = |λ−n−1{ f ( f n(z))− λ f n(z)}| ≤ |λ|−n−1c| f n(z)|2
≤ cρn|λ|−1|z|2.

Thusφn(z) converges to

φ(z) = φ1(z)+
∞∑

n=1

{φn+1(z)− φn(z)}
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uniformly on{|z| < δ}, and it is clear thatφ(z) satisfies the Schröder equation.
The uniqueness follows by comparing the coefficients.

Remark When|λ| > 1, we can show the same assertion by considering the
inverse function.

1.2.2 Schr̈oder equation forλ with |λ| = 1

In the case that|λ| = 1, the situation is very complicated. We gather several
basic facts without proofs, which will be found in the books referred to before.

First, for almost every suchλ, the corresponding Schröder equation has a
solution.

Theorem 1.2.5 (Siegel)For almost everyλ on the unit circle{|z| = 1}, every
function f (z) represented by a convergent power series

f (z) = λz+ c2z2+ · · ·

is linearizable at0, i.e., there exist a neighborhoodU of the origin and a
conformal mapφ(z) such that

φ( f (z)) = λφ(z) (z ∈ U ).

Remark Actually, Siegel showed that, ift ∈ R − Q and isDiophantine, i.e.,
there are constantsc > 0 andb < +∞ such that∣∣∣∣t − p

q

∣∣∣∣ ≥ c

qb

for every integerp and positive integerq, then f (z) with λ = e2π i t is lineariz-
able at 0.

Here, if we takeb > 2, then the total length of the set of non-Diophantine
numbers in [0,1] is not greater than

∑∞
q=N 2cq1−b, which is the total length

of intervals{t ∈ [0,1]
∣∣ |t − (p/q)| < cq−b} with q ≥ N for every N, and

which tends to 0 asN →+∞. Hence almost every number is Diophantine.

On the other hand, at everyrationally indifferentfixed point, that is every
fixed point with a multiplierλ = e2π i t with t ∈ Q, the function is not
linearizable at 0. In particular,λs corresponding to the non-linearizable case
are dense in the unit circle.
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Theorem 1.2.6 (Petal theorem of Leau and Fatou)For every functionf (z)
represented by a convergent power series

f (z) = z+ cp+1zp+1+ · · · (cp+1 6= 0)

at 0, there are2p domains{U j ,Vj }pj=1 such that

(i) for U =⋃p
j=1 U j ,

f (U ) ⊂ U ∪ {0},
∞⋂

n=1

f n(U ) = {0},

and forV =⋃p
k=1 Vk, ( f |V )−1 is univalent onV, and

( f |V )−1(V) ⊂ V ∪ {0},
∞⋂

n=1

( f |V )−n(V) = {0},

(ii) domains{U j }pj=1 are pairwise disjoint and so are{Vj }pj=1, and
(iii) the domain{0} ∪U ∪ V is a neighborhood of0.

Definition We call a component ofU satisfying condition (i) anattracting
petalof f (z) at the origin. Also, an attracting petal of( f |V )−1(z) such asVk

in Theorem 1.2.6 is called arepelling petalof f .

Remark When f has the form

f (z) = λz+ cp+1zp+1+ · · · (cp+1 6= 0)

with a primitive mth root of unityλ, consider f m(z), and we have a similar
assertion as above. In particular,f (z) has a family of attracting petals, di-
vides it into invariant subfamilies and permutes the elements of each subfamily
cyclically.

Thus, whenλ = e2π i t with a rationalt , the Schr̈oder equation forf at the
origin has no solution.

Example 1.2.1 Let

f (z) = z+ c2z2+ · · · (c2 6= 0)

and defineT(z) = −1/(c2z). Further we set

Ä+ = {|Im z| > 2c− Rez},
Ä− = {|Im z| > 2c+ Rez},

with a sufficiently largec. ThenT(Ä+) is an attracting petal off (z) at the
origin andT(Ä−) is a repelling petal off (z) at the origin.
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Verification By taking a conjugate byT(z), we have

g(z) = T ◦ f ◦ T−1(z) = z+ 1+ a1

z
+ · · · .

We choosec so that

|g(z)− z− 1| < 1/
√

2

if |z| ≥ c. Theng(z) is nearly a translation near∞. Hence a simple computa-
tion shows thatg(Ä+) ⊂ Ä+ ∪ {∞}, andT(Ä+) is an attracting petal off (z)
at the origin. Similarly, we see thatT(Ä−) is a repelling petal off (z) at the
origin.

As examples of quadratic polynomialsz2 + c having attracting petals, we
show as Figure 1.5 the cases that (a) c = 1/4 and (b) c = 0.31· · · + i 0.03· · ·.

(a)

Fig. 1.5. Julia sets with parabolic basins

Remark The explanation in the previous example indicates that, for any
attracting petalU of f (z), there exists a conformal mapφ(z) of U which
satisfies theAbel equation

φ( f (z)) = φ(z)+ 1 (z ∈ U ).

We call such aφ(z) aFatou functionfor the attracting petalU .

As another typical case where the Schröder equation has no solutions, we
cite the following.
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Theorem 1.2.7 (Cremer) For everyλ with |λ| = 1, set

Qλ(z) = λz+ z2.

Then the set ofλ such that the Schröder equation forQλ has no solutions is a
generic set, that is one which can be represented as the intersection of at most
countably many open dense subsets, in{|λ| = 1}.

Definition For a function f (z) holomorphic nearz0 which has the Taylor
expansion

f (z) = z0+ λ(z− z0)+ c2(z− z0)
2+ · · · (λ = e2π i t ; t ∈ R−Q),

z0 is called anirrationally indifferentfixed point. Further, we say thatz0 is a
Cremer pointof f (z) if the Schr̈oder equation forf (z) at z0 has no solutions.

Corollary The set ofλ such thatQλ has a Cremer point is dense in the unit
circle.

Remark Suppose that 0 is a fixed point of a polynomialP with the multiplier
λ with |λ| = 1. Then it is easy to see that, ifP is linearizable at 0, then 0 does
not belong toJP. The converse is also true. See Theorem 2.1.9.

Finally, we note the relation between Cremer points and the continued frac-
tional expansion in the case of quadratic polynomials.

Definition Let t ∈ R−Q, and consider the continued fractional expansion

t = 1

a1+
1

a2+
1

a3+ . . .

,

which induces the sequence{qn}∞n=1 of the denominators of the rational ap-
proximation oft , i.e. {qn} are determined by the following equations induc-
tively:

q0 = 1,q1 = a1, . . . ,qn+1 = qn−1+ qnan+1, . . . .

We say thatt is aBrjuno numberif

∞∑
n=1

1

qn
logqn+1 <∞.
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Theorem 1.2.8 (Brjuno–Yoccoz)Letλ = e2π i t with t ∈ R−Q, andQλ(z) =
λz+ z2. Then the Schröder equation forQλ has a solution near the origin if
and only ift is a Brjuno number.

In general,t is a Brjuno number if and only if every functionf (z) repre-
sented by a convergent power series

f (z) = λz+ c2z2+ · · ·

is linearizable at 0. For the details, see Yoccoz (1996).

1.3 Quadratic polynomials and the Mandelbrot set

In the case of quadratic polynomialsPc(z) = z2 + c, Theorem 1.1.4 means
that K Pc is connected if and only if the orbit of 0 is bounded. So we define

M = {c ∈ C | {Pn
c (0)}∞n=1 is a bounded sequence},

and call it theMandelbrot set. See Figure 1.6.

Fig. 1.6. Mandelbrot set


